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Abstrsxt-A procedure for extending the separation-of-variables technique to h~t~onduction prob- 
lems with time~e~ndent heat sources and boundary conditions is presented. It is shown how a modi- 
fication of the “separation” method, similar to one made when seeking vibration solutions and 
applicable to many linear p~ial~ifferential equations, transforms problems of this general class into a 
set of transient and steady-state sub-problems for which solution methods are well established. Results 
take the form of quasi-static expressions superimposed upon a product series involving characteristic 
functions of the corresponding uniformly excited cases. The method is thus suitable for extending 
existing solutions to time-dependent heat-source and end conditions, as well as offering an alternative 

and occasionally more convenient approach from better-known integral methods. 

NOMENCLATURE temneratures, heat fluxes, or internal energy 
so&es are ‘prescribed functions of time a& 
commonly encountered in practice. Although 
solution techniques for certain cases, character- 
ized by unsteady “inputs”, exist, the classical 
method of separating variables is not directly 
applicable. 

arbitrary, but integrable, 
space variables ; 
film-coefficient parameter; 
conductivity parameter; 
heat-generation rates per unit 
volume ; 
temperature ; 
static temperature functions; 
volume in P-space ; 
thermal diffusivity; 
coefficients of series expan- 
sions ; 
arbitrary, but integrable, time 
functions; 
thermal conductivities; 
time variable; 
eigenvalues and separation 
constants; 
eigenvectors; 
outward drawn normal on 
boundary, B; 
separation function (of t); ’ 

a( )/at; 
a( >/ax, ay )/8x2. 

This paper adapts an existing modification of 
the “separation” approach for treating problems 
of the types enumerated. Although sufficiently 
broad and easy to use in principle, the method 
presented does not appear in the standard 
repertory of conduction solution methods 
[l-4]. However, essentially similar approaches 
have been employed to solve time-dependent 
boundary condition, continuum vibration prob- 
lems [5-91. 

STOOD 

Consider the equation : 

V2T(P, t) = a;l BT(P, t)/at, for P in D, t > 0 (1) 

with 

M arrlav + NT = Z h(t) Gr(P), 
‘ 

INTRODUCTION forPonB,t>O (2) 

HEAT-CONDUCTION problems in which boundary and 
-_ 

* Principal Structures Engineer. T=F(P), for PinD,t=O. (3) 
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D is a continuum domain with boundaries at 
P = B. 

For solutions of (l-3), assume 

T(P, Q = xi Y?&(P) Y&(0 + c T0c(Wx0 (4) 
n , 

in which the T&P) are harmonic, i.e. 

V2Toi = 0. (5) 

Letting 

substituting (4) into (l), and (6) into the 
result yields 

= UmEX fP?iJ? Jlnw + Lm tin PJI. R I I& 

Making use of (5), equating termwise, dividing 
by pn &, and choosing - A,‘s for separation 
constants gives 

V2pln $n + 2 Cila&) 
~ = l/at - _..--._ 
W u(ln 

= - A,. (7) 

Substituting (4) into the boundary conditions 
(2) gives 

The following boundary conditions are de- 
duced from (8): 

Mapn/av+ Nqn =0, on B (9) 

M aTe@v + N Toi = Gg, on 3. (101 

Substitution of (4) into the initial condition 
(3) yields 

z Fpn Ifin + 4; Tos .fi (0) = WI 

which, upon insertion of (6) and 

T(P, 0) = W) = E: bn P&‘), (11) 
* 

becomes 

C Yn [ICln@) 4 C can&(O) - b,] = 0. 
11 i 

Thus we take 

$a = 6, - ‘c eilaft, for t = 0. (12) 

(l), (2) and (3) have now been transformed 
into the following three standard-type sub- 
problems : 

(a) From (7) and re-writing (9): 

V2pl, + A, vn = 0 in D and 

M &pll.,lav + Npln = 0 on B. (7’ and 9) 

(b) From (5) and (10): 

V2Toi = 0 in D and 

A4 aTO& + N Toi = Gi on B. (5 and 10) 

(c) From (7) and rewriting (12): 

$n + &l at #n = - x C&j#>, t > 0 (7”) 

+h = bn - Z cinh(O>, t=o. (12) 

To evaluate the bla’s and cgn’s, use is made of 
the orthogonality condition 

Thus fD Q?rnvn dvp = 0, m # n. (131 

(15) 

For the case of time-dependent heat sources 
and homogeneous boundary and initial condi- 
tions the governing equations and conditions 
are 

V2T(P, t) -t- k-l c Qj(P) g(r) = n,’ ilT(P, t)pt, 
3 

t>O, (16) 

M aTjay _t iV T = 0 on B with t > 0, (f7) 

T = 0 in D when t = 0. (18) 

To solve, assume a solution of the form 

T(P, t) == 2 cp&‘> $n(t) + C TojO’) g(t). (1% 
“1 3 

Letting 

T&P) = x df, I&P) and V2Toi + k-l Qy = 0, 
11 

(20) 
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it can be shown that (16-18) reduce to the follow- T,(x) = c cn X*(x) (33a) 
ing sub-problems : 

(a) V+ + A, q.~~ = 0 in D with h(x) = ZlL X,(x), (33b) 
n 

M a&L% + Npn = 0 on B (21) substituting (33a) into (30), making use of (29), 
(b) V2Tor + k-l Qj = 0 in D and equating termwise in n and dividing through by 

M aTojJ&, + N Tof = 0 on B (22) xn *% transforms (30) into 

(c) ~n+atXn~n=-Cd3n~l,t>O(23) XllXfl = a;l(& + cnf)l& = - a: 
I in which -a: is chosen as separation constant. 

/in = - : djn gj, t = 0. (24) Therefore, 

An example Xl+ a:Xn =0 (34) 

Given: the one-dimensional transient heat and 
equation : 

avia = a;'aiyat CW 
$9~ i- a: at tin = - Cn f. (35) 

with boundary conditions : 
Boundary and initial conditions for (34) and 

T(O; 1) = f(t), 

(35) are obtained after (31a), (31b) and (32) are 
T(L, t) = 0 (26) examined, i.e. 

and initial condition : X7&(0) = X&c) = 0 Pa) 

T(x, 0) = h(x) (27) &(O) = dn - c,.f(O) (36b) 

To solve (25-27), let and 

T(x, t) = Z Xn(x) #n(t) f To(x)f(t) (28) T,(O) = 1, T,(L) = 0. (36~) 
n 

in which T,, satisfies the steady-state heat- 
Solution of the pairs ((29) (36c)}, ((34) (36a)) 

conduction equation 
and {(35), (36b)) is straightforward after the 
orthogonality of the Xn’s is used to evaluate the 

d2T,,/dx2 = 0 (29) en’s and da’s: 

with boundary conditions to be prescribed 
shortly. 

Substituting (28) into (25-27) one obtains the 
transformed equation 

CX~~n+T~f(t)=a;-‘~X,rCI,+a,‘T,f 
n R 

boundary conditions 
(30) 

C Xn(0) #n(t) =f 11 - To(O)1 @Ia) 

2: Xn@) clln(t> = - f TOW), @lb) n 
and initial condition 

d 

n 
= su” h(x) X44 dx 

Jo” X;dx -* 

It should be noted that a solution is also 
possible if, instead of having To satisfy (29), it is 
taken to be an arbitrary function of x which also 
satisfies (36~) and possess continuous first and 
second derivatives. For this case, (35) would 
read : 

W-a~at*n=e~f--c,f (37) 

C X%(x) &z(O) + To f(0) = h(x). (32) with 
7I T:(x) = E en X%(x) (38) 

Expanding T,, and h in series of Xn functions ,1 

(which are orthogonal and assumed to constitute and 
a complete set), en = J,$ TI; X, dxIJ,L X,: dx. 
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This approach corresponds to Mindlin and 
Goodman’s method [6] for beam-vibration 
problems. Timoshenko [7] and Archer [9] modi- 
fied this by superimposing a quasi-static solution 
upon the free-vibration modes. This latter tech- 
nique, which is comparable to the one used here, 
has the advantage of eliminating at least one 
forcing term in the separated time equation 
[e.g. f(t) in (37)] and requires at least one less 
eigenvector expansion [e.g. (38) is unnecessary]. 
Furthermore, it is easier to physically interpret 
the significance of superposing a quasi-static 
component upon an eigenvalue-product solution. 
One may also expect that a quicker series con- 
vergence in (28) is effected when the time is large 
and the “transient” component of the solution 
is small with respect to the “steady-state” solu- 
tion component. 

DISCUSSION 

Superposition of the two general cases treated 
leads to a systematic sub-division of the original 
problem into a series of quasi-static ones super- 
imposed upon a simplified transient system. 
These latter components are composed of 
eigenvectors and corresponding time terms. The 
time terms in the solutions to the transient 
problems satisfy first-order differential equations 
in which the forcing functions are governed by 
the time-dependent boundary and heat-source 
effects. 

Implicit in the derivations is the assumption 
that the time-dependent excitations can be put 
in terms of sums of separable space and time 
functions. This presents no serious limitation 
upon the technique, since a large majority of 
actual situations satisfy this condition. Further- 
more, the method assumes that an eigenvalue 
solution may be associated with the one-, two- 
or three-dimensional domain considered. This 
requires that the body be finite in at least one 
dimension. 

The present technique is reminiscent of the 
solution of ordinary linear nonhomogeneous 
equations in which general and particular solu- 
tions are sought. The technique may thus be 
thought of as a quasi-steady solution super- 
imposed upon a complementary (or “transient”) 
one. The former account for external disturb- 
ances while the latter are composed of elements 
which are intrinsic to the system (i.e. eigen- 
values). 

The present method, besides supplying a new 
approach to the type of problem and boundary 
conditions discussed, takes advantage of the 
fact that existing steady boundary and heat- 
source eigenvalue solutions can be converted 
into corresponding time-varying “forced” solu- 
tions. Furthermore, since it is not always possible 
or convenient to perform the integration which 
appears in existing methods such as Duhamel’s 
integral theorem or Green’s functions, nor to 
invert a relevant Laplace transform, the pro- 
cedure outlined here may supply solutions to 
problems for which existing methods are 
deficient. 
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Resume-Lauteur presente une extension de la methode de separation des variables aux problemes 
de conduction thermique avec sources de chaleur et conditions aux limites fonctions du temps. II 
montre comment une modification de la methode de “separation” semblable a celle utilisee dans la 
methode des solutions vibratoires et applicable a plusieurs equations aux d&iv&es partielles lineaires 
transforme les problemes de ce type general en un ensemble de problemes relatifs aux phenomenes 
stationnaires et transitoires dont les methodes de resolution sont parfaitement Btablies. Les resultats 
ont la forme d’expressions quasi-stationnaires superposees a des series de produits contenant les 



fonctions caract&istiques correspandant aux cas 05 I’excitation estuniforme. La m&ode permet done 
~~ten~e~es soIutionse~st~tes~ux~s des sources dechtieur av~conditio~s limiies fonctions du 
temps~t:tpermetenoutredetrouverunesofutio~appr~~nouveite,quiestquei~~efo~spIuscommode, 

A partirdes m&odes int&rales bienconnues. 

Zuswmmentiung-Nach dem angegebenen Verfahren llsst sich die Methode der ‘l&mung der 
Variablen auf Wtirmeleitprobleme mit zeitabblngigen Wlrmequellen und Grenzbedingungen ausdeh- 
nen. Es wird gezeigt, wie eine Modifikation der “Trennmethode”, wie sie bei Schwingungsproblemen 
und vielen partiellen DitTerentialgleichungen angewandt wird, vom algemeinen Problem auf eine 
Reihe van Unterproblemen fiir station&e Verblltnisse fiihrt, fiir die Wsungen bekannt sind. Die 
Ergebnisse zeigen Ausdriicke quasistatior&rer Vor&nge, die einer ~r~~k~enre~e aus charakteris- 
tischen ~u~t~onen der eu~~~e~~nden F&He iiberlagert sind. Die Methode eignet sich sowohl dafiir, 
bestehende Liisungen auf ~~tabb~n~~ge W~rrn~r~u~ug und ~rg~~~d~~~un~n auszudehnen 
afs au& eine weite, gelegentlich bequemere ~nghe~ng nach bet&s ~kannten rn~e~a~meth~en 

IU err&hen. 

~~~~~~~~-~a~T~~ crrocoF np~r~t~~~~t~~~ reToJ$a ~a~~~~~Fr~~ na~@~~~~~Hb~~ K sagarag 
T@~~o~pOBO~Ho~T~ npE1 Ha~~Y~~ 3an~~~~~~~x OT Bpt?&ieHH ~CToYH~~OB TW.Wl R rpan~qn~x 
y~~o~~~~ lkt~a3a~o,1tatr ~oAM~IINaX~MRMeToI7acrpa3~e3feHnff*,arrajloruY~~rr ~o~~~~Ka~~~, 
~~~U~~~~~~O~ npH IIOACW? ~O~a6~~~~X~~ peUIeHIl@ 5% np~~@H~MO~ Ho I\rNortiM dlHH&HbIM 
~~~~e~~~~~a~bHbIM ypaBHf?EUUiM B YaCTKbIX npOM3BO&HbIX, npeo6paoyeT aafla=ia 3TOrO 
oikqero Hnacca B C~WIVW~ ~cna~o~~b~hsx aafiaq nepexoqioro I* cTaqaoHapnor0 co- 
cToflm&, ~JIK ~o~opbrx xopou~o paqa6oTashr MeToRb peruewxzrr. I3 pe3ysbTaTe nony9aroTcfl 
HmWWraTRqecKi4e yc~1013Hfi, Haao?HeHWYe lra pnnbI npoasaeaefial, HoTopble BHJnoYamT 
xapaHTepMcTnsecHne Q~HIEIQZH coo~~erc~~yrom~x czyaea panwor8epIroro Bo36ymfieHtIff. 
TaH5tx OGpaaOM, 3TQT clioco6 nOaBonReT IIpliIWHMTb Cym~~TBy~l~~o pemealrg K cnysaro 
~a~r~Y~~3~B~~n4ero ok speffle~~ ~i~~o~~~~~~aTe~~a~~ KoaegHMxYCJIo3BB,aTaI;meR~~paTb 
Goxee ~10~xo~n~~~~ EI rrriorga 6o;ftte ~~06~~1~ SieToz 113 im3ecTmzx ~~T~r~a~~~H~x nre~ogoe. 


